Def Consider vectors  $\overrightarrow{V_1}, \overrightarrow{V_2}, \dots, \overrightarrow{V_n} \in \mathbb{R}^m$ 

- (1) A <u>linear combination</u> of  $\overrightarrow{V_1}, \overrightarrow{V_2}, \cdots, \overrightarrow{V_n}$  is a vector of the form  $\underbrace{C_1\overrightarrow{V_1} + C_2\overrightarrow{V_2} + \cdots + C_n\overrightarrow{V_n}}_{\text{sum of multiples}} \text{ with } C_1, C_2, \cdots, C_n \in \mathbb{R} \, .$
- (2) The span of  $\overrightarrow{V}_1, \overrightarrow{V}_2, \dots, \overrightarrow{V}_n$  is the set of all linear combinations of  $\overrightarrow{V}_1, \overrightarrow{V}_2, \dots, \overrightarrow{V}_n$ .

e.g. Span  $\{\overrightarrow{V}\}$  is a line Span  $\{\overrightarrow{V}, \overrightarrow{w}\}$  is a plane

- (3) Vectors  $\overrightarrow{V_1}, \overrightarrow{V_2}, \cdots, \overrightarrow{V_n} \in \mathbb{R}^m$  are <u>linearly independent</u> if we have  $C_1\overrightarrow{V_1} + C_2\overrightarrow{V_2} + \cdots + C_n\overrightarrow{V_n} \neq \overrightarrow{O}$  unless  $C_1, C_2, \cdots, C_n$  are all zero.
- Prop Vectors  $\overrightarrow{V_1}, \overrightarrow{V_2}, \cdots, \overrightarrow{V_n} \in \mathbb{R}^m$  are not linearly independent  $\iff$  One of them is a linear combination of the others  $\overrightarrow{Pf}$  If  $\overrightarrow{V_1}$  is a linear combination of  $\overrightarrow{V_2}, \cdots, \overrightarrow{V_n}$ , we have  $\overrightarrow{V_1} = C_2 \overrightarrow{V_2} + \cdots + C_n \overrightarrow{V_n}$  for some  $C_2, \cdots, C_n \in \mathbb{R}$ .

$$\implies -\overrightarrow{V_1} + C_2\overrightarrow{V_2} + \dots + C_n\overrightarrow{V_n} = \overrightarrow{O}$$

 $\Rightarrow \overrightarrow{V_1}, \overrightarrow{V_2}, \cdots, \overrightarrow{V_n}$  are not linearly independent

Conversely, if  $\overrightarrow{V_1}, \overrightarrow{V_2}, \cdots, \overrightarrow{V_n}$  are not linearly independent, we can similarly argue to express one of them as a linear combination of the others.

## Note (1) Two vectors are linearly independent



(2) Intuitively, linear independence means that each vector adds a new dimension.



Thm Vectors  $\overrightarrow{V_1}, \overrightarrow{V_2}, \dots, \overrightarrow{V_n} \in \mathbb{R}^m$  are linearly independent

 $\iff$  RREF(A) has a leading 1 in every column where A is the matrix with columns  $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_n$ 

pf  $\overrightarrow{V_1}, \overrightarrow{V_2}, \cdots, \overrightarrow{V_n}$  are linearly independent

 $\iff X_1\overrightarrow{V_1} + X_2\overrightarrow{V_2} + \dots + X_n\overrightarrow{V_n} \neq \overrightarrow{0} \text{ unless } X_1, X_2, \dots, X_n \text{ are all zero.}$ 

 $\iff$  A $\overrightarrow{x} \neq \overrightarrow{0}$  for  $\overrightarrow{x} \neq \overrightarrow{0}$ 

 $\iff$   $\overrightarrow{Ax} = \overrightarrow{0}$  has a unique solution  $\overrightarrow{x} = \overrightarrow{0}$ 

Ex For each part, determine whether the given vectors are linearly independent.

$$(1) \quad \overrightarrow{u}_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad \overrightarrow{u}_2 = \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

Sol Consider the matrix A with columns  $\vec{u}_1, \vec{u}_2$ .

$$A = \begin{bmatrix} 2 & -3 \\ -1 & 0 \\ 0 & 1 \end{bmatrix} \implies RREF(A) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

 $\Rightarrow$  RREF(A) has a leading 1 in every column

 $\Rightarrow$   $\vec{u}_1$  and  $\vec{u}_2$  are linearly independent

Note We can get the same answer by observing that neither vector is a multiple of the other.

$$(2) \quad \overrightarrow{V}_{1} = \begin{bmatrix} 3 \\ 0 \\ 2 \\ -1 \end{bmatrix}, \quad \overrightarrow{V}_{2} = \begin{bmatrix} 4 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \quad \overrightarrow{V}_{3} = \begin{bmatrix} 1 \\ 4 \\ 4 \\ 3 \end{bmatrix}$$

Sol Consider the matrix A with columns  $\overrightarrow{V_1}, \overrightarrow{V_2}, \overrightarrow{V_3}$ 

$$A = \begin{bmatrix} 3 & 4 & 1 \\ 0 & -2 & 4 \\ 2 & 1 & 4 \\ -1 & 0 & 3 \end{bmatrix} \implies RREF(A) = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $\Rightarrow$  RREF(A) has no leading 1's in column 3

 $\Rightarrow \overrightarrow{V_1}, \overrightarrow{V_2}, \overrightarrow{V_3}$  are not linearly independent

Ex If possible, express the vector

$$\overrightarrow{w} = \begin{bmatrix} 1 \\ -4 \\ -8 \\ 1 \end{bmatrix}$$

as a linear combination of the vectors

$$\overrightarrow{V}_{1} = \begin{bmatrix} 2 \\ -3 \\ 1 \\ 1 \end{bmatrix}, \quad \overrightarrow{V}_{2} = \begin{bmatrix} 0 \\ 2 \\ -4 \\ -1 \end{bmatrix}, \quad \overrightarrow{V}_{3} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

<u>Sol</u> Take A to be the matrix with columns  $\overrightarrow{V_1}, \overrightarrow{V_2}, \overrightarrow{V_3}$ .

We want  $\overrightarrow{W} = X_1 \overrightarrow{V_1} + X_2 \overrightarrow{V_2} + X_3 \overrightarrow{V_3}$ 

 $\implies$  We solve  $\overrightarrow{w} = A\overrightarrow{x}$ 

$$\Rightarrow$$
  $X_1 = 2$ ,  $X_2 = 1$ ,  $X_3 = -3$ 

$$\implies \overrightarrow{w} = 2\overrightarrow{V_1} + \overrightarrow{V_2} - 3\overrightarrow{V_3}$$

- Note (1) Such a linear combination does not exist if the equation  $A\overrightarrow{x} = \overrightarrow{w}$  has no solutions.
  - (2) Our computation further shows that  $\overrightarrow{V_1}, \overrightarrow{V_2}, \overrightarrow{V_3}$  are linearly independent.

(RREF(A) has a leading 1 in every column)

Ex Consider the vectors

$$\overrightarrow{u} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \quad \overrightarrow{V} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \quad \overrightarrow{w} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$

(1) Does  $\overrightarrow{w}$  lie in the span of  $\overrightarrow{u}$  and  $\overrightarrow{v}$ ?

<u>Sol</u> Take A to be the matrix with columns  $\overrightarrow{u}$ ,  $\overrightarrow{v}$ .

 $\overrightarrow{w}$  lies in the span of  $\overrightarrow{u}$  and  $\overrightarrow{v}$ 

$$\iff \overrightarrow{w} = x_1 \overrightarrow{u} + x_2 \overrightarrow{v} \text{ for some } x_{11} x_2 \in \mathbb{R}.$$

 $\iff \overrightarrow{w} = A\overrightarrow{x}$  has a solution.

$$\begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 0 \\ D & -1 & 3 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & D & 2 \\ D & 1 & -3 \\ D & D & D \end{bmatrix} \text{ no leading 1's in the last column}$$

The linear system has a solution.

$$\Rightarrow$$
  $\overrightarrow{w}$  lies in the span of  $\overrightarrow{u}$  and  $\overrightarrow{v}$ 

(2) Are  $\vec{u}, \vec{v}, \vec{w}$  linearly independent?

Sol By (1),  $\overrightarrow{w}$  is a linear combination of  $\overrightarrow{u}$  and  $\overrightarrow{v}$   $\Rightarrow \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$  are not linearly independent

Note Alternatively, since we considered the matrix with columns  $\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$  in (1), we can look at its RREF to get the same answer.